4JX1: загадка не для слабонервных
Легкое "summary" нелегкого ремонта Труд этот, Ваня, был страшно громаден -
Не по плечу одному!
Н.А. Некрасов
Несколько вводных слов
В сентябре 2004 года, в один из последних погожих дней на трассе на приличной скорости – за 130 – с моим Опелем Монтереем 1999 года выпуска случилась маленькая неприятность – задымил двигатель. Задымил так, что 4-х рядная Новорижская трасса с широченным разделительным газоном, а также лес по обеим сторонам дороги скрылись из виду. Двигатель – знаменитый 159-сильный турбо-дизель принципиально новой концепции разработки Исузу – 4JX1. Пробег небольшой – всего 45 тыс.км. Заглушить его удалось, только тронувшись на тормозе..
Участвуя в вяло текущем уже достаточно длительное время ремонте, удалось набраться кое-какого опыта, которым хочется поделиться – может быть, кому-то это облегчит ремонт, а кого-то предупредит и спасет от крупных неприятностей, выпавших, к сожалению, на мою долю. В настоящее время, к счастью, стал доступен диск с Руководством Исузу по ремонту, в том числе и данного двигателя, мы же начинали в условиях скудной и порой разноречивой информации из интернетовских форумов.
Прошу обратить внимание, что речь ведется именно об ОПЕЛЕ МОНТЕРЕЕ 1999 года выпуска. Несмотря на бытующее мнение, что Монтерей, Исузу Трупер и Исузу Бигхорн – это "близнецы-братья", всё же оказалось, что братья они только по "телу", а наполнение "мозгов", то есть программы, внесенные в компьютер, у них разные. Это выражается и в том, что диагностический опелевский прибор Tech 2 не распознает компьютеры Трупера и Бигхорна, и в различной реакции компьютеров этих машин на некоторые диагностические действия, которые мы предпринимали в процессе ремонта двигателя.
Прошу так же воспринимать всё сказанное здесь с изрядной долей скептицизма – так же, как делаю это я сам – многое из того, что кажется сейчас очевидным, может в одну минуту перевернуться вплоть до наоборот, как было уже не раз в процессе ремонта этого признанного шедевра японского двигателестроения. В особенности это касается выводов о причинах произошедшего с моим автомобилем.
Как это работает
Схема работы этого двигателя описывалась уже в Интернете неоднократно, поэтому изложу принципиальные моменты в той интерпретации, которая сложилась в моей голове на данный момент.
Фото 1. Под клапанной крышкой. Снята форсунка 1 цилиндра. В центре снимка-масляная рампа, посередине в ней находится датчик давления масла, за ним – масляная магистраль высокого давления. | |
Обычное для дизелей устройство, когда нагнетаемое ТНВД топливо впрыскивается через форсунки в камеры сгорания, заменено принципиально другим – топливного ТНВД нет вовсе, впрыск топлива здесь осуществляется через четыре трехобъемные форсунки, расположенные вертикально и по оси двигателя под клапанной крышкой (фото 1). В верхней части каждой форсунки располагается соленоид, на который в момент впрыска подается управляющий сигнал с компьютера. Задача соленоида – по управляющему импульсу открывать доступ масла внутрь форсунки. Ниже – к средней части форсунки – подводится моторное масло под высоким – 4 -7 МПа – давлением, и ещё ниже, в ту часть, которая погружается в головку блока цилиндров, через канал в головке подается под небольшим (до 5.5 кг/см2, только для обеспечения равномерной подачи) давлением топливо. Ещё ниже, непосредственно в камеру сгорания, опускается распылитель. Давление масла передается на топливо через систему поршней с соотношением площадей грубо 7:1, в результате чего достигается давление, необходимое для распыла. Для осуществления впрыска на соленоид форсунки с компьютера подается один или несколько 110-вольтовых импульсов общей продолжительностью около 1- 1,5 миллисекунды. Этим импульсом открывается доступ масла к поршню и давление масла в форсунке достигает указанных выше величин. После снятия импульса с соленоида с помощью возвратных пружин система подготавливается к следующему впрыску, а масло из форсунки стекает под клапанную крышку.
Форсунка в разобранном виде.
| Фото 2. Масляный насос высокого давления. |
|
| Фото 3. Датчик давления масла (разрез). |
Масло со столь высоким давлением подается специальным агрегатом – масляным насосом высокого давления (фото 2) и аккумулируется специальной емкости – масляной рампе (фото 1), которая представляет собой толстостенную трубу с двумя демпферами – гасителями колебаний давления – по торцам, внутри. На эту рампу своими масляными каналами крепятся форсунки, и в неё же вворачивается один из важных для работы двигателя датчиков – масляный датчик высокого давления. В разрезе (болгаркой) его можно посмотреть на фото 3.
На масляной магистрали высокого давления, между масляным насосом и рампой расположен, также для гашения колебаний давления масла, демпфирующий клапан, который полностью открывается при примерно 2-х кг/см2 (виден его штуцер на фото 3 сзади масляного насоса). После выключения зажигания давление масла в рампе довольно быстро падает до 2-х кг/см2, и потом плавно сбрасывается до атмосферного. К глубочайшему сожалению всех обладателей двигателей 4JX1, и моему – в особенности – в одном корпусе с масляным насосом высокого давления собран и топливный насос (о причинах сожалений – ниже).
Как уже говорилось, работа двигателя управляется и контролируется компьютером. Вследствие того, что мы долго не могли пустить двигатель, мне пришлось пройтись с осциллографом и вольтметром по цепям компьютера для того, чтобы понять логику его работы и найти причину наших неудач. Компьютер с помощью многочисленных датчиков собирает информацию о текущем состоянии двигателя и выдает необходимые управляющие сигналы. Сигналы аналоговые, базовое напряжение – 5 вольт, некоторые датчики работают от 12 вольт.
Датчиками на этом двигателе оборудованы практически все его узлы. На мониторе стандартного GM-овского диагностического прибора TECH-2 для этого двигателя отображается более 40 параметров. Среди них – обороты двигателя, определяемые с помощью датчиков положения коленвала и распредвала, давления масла в обеих масляных системах, атмосферное давление, температура – окружающая и по узлам двигателя, положение педали газа, включенная передача, скорость автомобиля, напряжение сети, состояние тормозов и пр. Часть этих датчиков является жизненно важными, то есть без правильных сигналов с них пуск и работа двигателя невозможны, для остальных – в случае их отказа – существуют обходные программы, позволяющие использовать осредненные величины их сигналов.
К датчикам, без правильных показаний с которых пуск двигателя невозможен, относятся датчики давления масла в масляной рампе, положения коленвала и распредвала, напряжения бортсети, и исправности электрической цепи тормозной системы (на Монтерее; на Бигхорне, по сведениям моего добровольного помощника из Владивостока, это не так). Наверно, есть что-то ещё.
Два больших разъема на компьютере обслуживают 5-вольтовые цепи, причем правый (по ходу а/м) – красный, в основном входные сигналы, левый, синий – в основном на "раздаче". Маленький разъем обслуживает силовые цепи: два провода – 12в, два – земля (минус) и один (черно-красный) – общая шина 110 вольт на форсунки (каждая форсунка в нужный момент получает свою землю. 110 вольт подаются импульсно – только на время впрыска). Минус компьютера соединен с минусом автомобиля.
Сигналы датчиков
Несколько слов о сигналах основных датчиков. Дольше всего мы ковырялись с изучением датчика давления масла в рампе – даже с новым насосом сигнал с него не шел. Потом оказалось, дело было не в датчике, но датчик к тому моменту уже безвинно пострадал. К счастью, это была единственная (на данный момент) напрасная потеря. Так вот, датчик этот выдает обычный аналоговый сигнал – линейный в смысле зависимости выходного напряжения от давления масла, 5-вольтовое питание, 1.5 вольта на выходе соответствует 7.2 МПа. Никакого порогового срабатывания у датчика нет.
Датчик коленвала – 12-вольтовый – расположен справа по ходу автомобиля, внизу, в районе маховика. Обычный датчик Холла, выдает прямоугольный сигнал. Что важно – сигнал с каждого зуба маховика. Период сигнала при вращении стартером – порядка 2 ms. Наверняка, каким-то образом отмечен начальный зуб (соответствующий ВМТ 1-го цилиндра). Таким образом, компьютер всегда знает положение коленвала абсолютно точно.
Датчик распредвала – также 12-вольтовый – расположен на виду – рядом с крышкой радиатора. С его помощью компьютер контролирует фазы газораспределения по цилиндрам. Сигнал с него в целом – ступенька длиной в пол-оборота верхней шестерни ремня ГРМ (и столько же – ноль). Однако в точке ВМТ 1-го цилиндра в ступеньке – провал до нуля, а, соответственно в диаметрально противоположной точке – выступ 12 вольт. Если посмотреть на ведомую шестерню ремня ГРМ (фото 6), сбоку видна металлическая пластина на пол-оборота с прорезью, а внизу, напротив – металлический же выступ.
Логика запуска двигателя такова. Сначала проверяется напряжение в сети при вращении стартером. При падении напряжения до порядка 8.5 вольт (цифра ориентировочная) срабатывает реле защиты (в блоке предохранителей, справа) – пуск невозможен. Затем проверяется состояние электрической цепи тормозов. При отсутствии сигнала пуск блокируется (крутить можно до посинения: у меня был случай – сгорел предохранитель стоп-сигналов – двигатель не пускался.).
Дальше сопоставляются показания датчиков коленвала и распредвала. Сигнал начального зуба коленвала должен совпадать с меткой ВМТ распредвала. При промахе в 1 зуб – пуск невозможен. На этом мы также потеряли много времени, о чем чуть ниже. Ну и, последнее – давление масла в рампе должно превышать некую величину требуемого значения. Это значение зависит от ряда параметров – температуры двигателя в первую очередь – и обычно колеблется в районе 4 – 6 МПа и также отображается на сканере.
Вероятно, есть ещё ряд параметров, которые могут блокировать пуск – например, расход топлива за цикл работы топливного насоса, если его значение будет сильно отличаться от60-80 мм3 за ход. Но это – только предположение, мы не проверяли.
Фото 4. Бачок с подсоединенным компрессором. | |
Если все необходимые сигналы компьютером получены – возникает импульсный сигнал 110 вольт, и двигатель пускается. Если, конечно, с топливом всё в порядке. Кстати, рекомендую (фото 4) универсальный прибор дизелиста-исследователя (он нам пригодился также и при изучении датчика давления масла в рампе) – масляный бачок с подсоединенным к нему компрессором. Перед пуском двигателя мы с его помощью прокачали топливную магистраль давлением приблизительно в 6 кг/см2. Подсоединяли на ВХОД топливного фильтра
Важное замечание. На время вращения стартером диагностическая ветка системы управления отключается и поэтому никаких кодов об ошибках датчиков в память компьютера не заносится. То есть, если у вас барахлит датчик коленвала или распредвала, или неправильно выставлена метка ремня ГРМ – единственный способ определить это (не считая замены всех датчиков "по кругу") – следить за показанием поля "обороты двигателя" на сканере. То же касается и давления масла в рампе, и тормозов – эти параметры также отображаются на сканере.
Об установке ремня грм
Как я уже отметил выше, много времени нами было потеряно из-за того, что механик при неоднократной установке-снятии ремня ГРМ, в конце концов промахнулся. Найти эту ошибку оказалось невероятно сложно, в первую очередь из-за того, что вообще не было понятно, что её надо искать. Это сейчас, благодаря проведенной работе, логика пуска двигателя стала ясна. А в начале пути, при первых попытках запуска, мы только имели в наличии незапускающийся двигатель, отсутствие каких-либо диагностических кодов и уйму предположений в голове, почему же эта зараза не пускается. Замечу, что проверить попадание ремня в зуб после того, как вы провернули двигатель, очень непросто – стандартную метку на шкиве коленвала вы без его (шкива) снятия не увидите, а установочные метки ремня совпадают далеко не на каждом обороте коленвала. Механики называли цифру 10-й – 12-й оборот (не проверял), а в промежутках между совпадениями метки могут взаимно располагаться весьма произвольно. Это происходит из-за различного числа зубьев на шестернях коленвала и входящей в зацепление с ней шестерне масляного насоса высокого давления, на которой закреплена ведущая шестерня ремня ГРМ, и, по незнанию, вызывает большие недоумения.
Так вот, в качестве сомнительной зацепки мы имели только странно ведущие себя цифры в графе "обороты двигателя" – там был ноль, а при снятии клеммы с датчика распредвала – цифры возникали, но добирались только до значения 100 и замирали (хорошо заряженные аккумуляторы дают на этом двигателе примерно 200 оборотов). В то время мы даже не знали толком, должны ли эти цифры вообще появляться на мониторе TECH-а в момент пуска. Кроме того, поскольку оба датчика, влияющие на эту цифру, сигнал давали исправно, главенствующей версией всё больше и больше становилась мысль о неисправности компьютера, которая укреплялась по мере того, как снимались и анализировались характеристики с остальных pin-ов разъемов компьютера (результаты этих замеров сохранились, кому понадобится – пишите). В конце концов, было даже принято решение о перепрограммировании компьютера. К счастью, эта идея натолкнулась на технические трудности и не была реализована.
| Фото 5. "Родная" метка на шкиве коленвала была спрятана под приливом на корпусе двигателя. Видимые на фотографии пропилы на шкиве сделаны нами. |
|
| Фото 6. Ведомая шестерня ремня ГРМ. Виден датчик положения распредвала. Если присмотреться, на фото-деталировке просматривается прорезь в металлической пластине, а снизу – на общем виде – диаметрально расположенный выступ. |
|
| Фото 7. Ведущая шестерня ремня ГРМ. |
Долгожданный импульс на форсунки появился лишь после того, как удалось разобраться с системой установки ремня ГРМ. К тому времени у нас появились странички из Исузовского мануала, заботливо вырванные и присланные моим помощником из Владивостока. "Установите первый цилиндр в ВМТ и установите метку распредвала, затем надевайте ремень". Начали искать метку на шкиве коленвала (фото5). Нашли только после снятия шкива с вала – метка находится на внутренней стороне и скрыта под наплывом на блоке. Метка, что вы видите на фото на всю толщину шкива, нанесена нами.
Тут же отмечу ещё одну особенность – эта метка оказалась вовсе не меткой ВМТ – по данным моих механиков, после снятия головки блока выяснилось расхождение между положением по метке и ВМТ 1-го цилиндра в 2 миллиметра по высоте хода поршня. Так что "палочкой", или "на палец" определять на этом двигателе ВМТ не рекомендуется.
Таким образом, при обычной смене ремня совмещайте две метки – на ведущей и ведомых шестернях (фото) – и не ошибётесь. В более сложных случаях придется снимать шкив коленвала.
Понять логику создателей этого чуда, спрятавших метку на шкиве коленвала, мне не по силам.
Так что же всё-таки произошло?
Вернемся к первым минутам после остановки двигателя.
Под капотом – сразу после остановки
Очень даже милое зрелище. С виду – всё совершенно цело. Лишь на стыках впускной магистрали – масляные потеки. Будто живой. Естественно, не заводится.
Начинаем вскрытие. Ремни – на месте, жидкости – на месте. Вот и оно! Масла как-то подозрительно много – сантиметра на три, а то и больше, выше метки МАХ. Неужели гады механики на последнем ТО напутали? Да нет, вряд ли – покупал две канистры по 4 литра, вот он, два литра остаток. Норма заливки – 6. Всё сходится. Не то!
Вероятная картина того, что произошло: При попадании топлива в масло объем жидкости в картере двигателя значительно возрос, после чего масло – вернее, топливно-масляная смесь – при таком её количестве засосалась в систему отвода картерных газов – и дальше, в воздушную магистраль и – через турбину – во входной коллектор, вместо воздуха. Сразу предсказываются и вероятные последствия – возможные повреждения лопастей турбины, работа на низкооктановом топливе – масле, которое, к тому же текло в неограниченном количестве – соответственно, сверхвысокая температура при сгорании и близкие к критическим обороты – и далее по списку – поршни, клапана, кольца. Становится зябко.
Фото 8. "Здоровый" поршень 1-го цилиндра, и прогоревший 4-го. | |
|
Фото 9.Стенка камеры 4-го цилиндра. | |
|
Фото 10. Головка блока с присоединенными впускным и выпускным коллекторами. Вход воздушной магистрали находится над клапанами 4-го цилиндра, поэтому при попадании масла и топлива в воздушный коллектор страдает в первую очередь именно 4-й цилиндр. | |
На деле, к сожалению, практически так и вышло – в поршневой проблемы 4-м цилиндре (фото 8,9,10), турбина разрушилась, правда, не в лопастях. Собственно, от этого не легче. Вся впускная магистраль на участке между воздушным фильтром и впускным коллектором действительно оказалась дополнительной емкостью с маслом – из неё вытекло при демонтаже не меньше литра. Ещё примерно 10 литров смеси (при норме в 6) слили из картера.
Вас же предупреждали!
Откуда же его столько взялось? Тогда это был главный вопрос и недоумение, поскольку обычно главный поставщик дополнительной жидкости в масляную систему – радиатор – был издевательски полон, так же, как и расширительный бачок.
Сейчас ответ на этот вопрос известен любому неначинающему владельцу 4JX1 – увы, на двигателях 98-99 годов выпуска был конструктивный дефект, официально признанный ИСУЗУ, вернее даже два: в масляную систему двигателя могла попадать солярка, причем двумя путями – через разрушающиеся со временем уплотнения форсунок и через шток топливного насоса. И тот, и другой дефект в 2000 году был устранен, о чем косвенно говорит замена в этом году каталожных номеров и на кольцевые уплотнения форсунок, и на комбинированный насос, элементом которого является топливный.
Здесь же упомяну и потенциальную проблему этого двигателя, которая, похоже, способна проявиться (и уже проявлялась, судя по обсуждениям в Интернете) самостоятельно – это проблема 3-го и 4-го цилиндров двигателя, которые, похоже, работают в гораздо более жестких условиях, чем 1-й и 2-й. Особенно 4-й – если на этом двигателе суждено пострадать какому-то из цилиндров, это наверняка будет он. В чем, собственно, мне и пришлось убедиться.
Но вернемся к попаданию солярки в масло.
Сейчас уже понятно, что в течение некоторого время до случившегося, звонили, по крайней мере, два звоночка, которые, будучи правильно и вовремя интерпретированы, помогли бы мне избежать столь обширных неприятностей. Но, к сожалению, мысль моя (и не только моя – я, естественно, пытался найти решение и на сайтах., и на сервисах, и в беседах с друзьями) не смогла связать между собой и нужным образом обработать эти сигналы.
Месяца за два, наверно, до событий, началась у меня по утрам бодяга с машиной – заводится "с полутыка", проработает несколько оборотов – и глохнет. Это уже потом я нашел подобные жалобы и в англоязычном Интернете, а тогда только удалось довольно быстро найти способ "лечения" – несколько качков с утра насосом на топливном фильтре не очень досаждали. Увы, место утечки солярки тогда не удалось определить – и все доступные хомуты заменил, и газетку под двигателем на ночь расстилал... А солярка, оказывается, понемногу утекала в картер. Не настолько сильно, чтобы можно было заметить повышение уровня масла, да и не каждую ночь – видимо, это зависело от того, в каком положении остался поршень топливного насоса. Но дефект уже возник, и явно у меня было время (при правильной трактовке) на его устранение. В общем, надеюсь, что вы, прочитав эти строки, будете вооружены.
Второй звоночек менее очевидный, хотя начал звонить раньше. Начал я замечать, что тысячи через три после замены масла на холостых оборотах падает его (масла) давление. Причем к 6-й тысяче – после прогрева уже чуть ли не до двух кг/см2. На рабочих оборотах падение тоже было, но менее значительное. Очень меня это расстраивало, начал грешить на поставщиков масла, хотя и сильно сомневался – я лечу свои "Опеля" давно и с успехом в одном и том же месте. Начал менять масло чаще – как только возникала эта проблема. Эта процедура помогала, успокаивала, но, увы, от более крупных неприятностей не спасла. Разбавление масла соляркой в процессе работы двигателя – от этой напасти заменой масла не избавиться.
Таким образом, могу с уверенностью сказать, что главный недуг двигателя 4JX1 выпуска 98-99 годов – проникновение топлива в моторное масло – не развивается мгновенно и при своевременной реакции лечится без последствий относительно малой кровью.
Потери
Турбина. Выглядит, как живая. Люфтов нет, крыльчатка вертится свободно. Но при запуске с оси крыльчатки начинает подтекать масло. Турбину сняли, промыли, бачок с маслом – на масляный вход – потекло сильнее. Турбинка под списание – разрушено уплотнение подшипника компрессора со стороны всасывающего патрубка – ремонту на этой модели не подлежит.
Кольцевые уплотнители форсунок ("резиновые колечки"). Поменяли из общих соображений – внешне они были абсолютно "живыми".
Масляный насос высокого давления в сборе с топливным. Кандидат №1 на замену после появления "звоночков" и главная причина всех моих бед. В каталоге GM топливный насос отдельно не существует, и в 2000 году на этот узел поменялся каталожный номер – первый признак, что его модифицировали. Можно надеяться, что проблему убрали. Топливный насос течет по штоку – солярка прямиком стекает в полость насоса, соединяющуюся с картером двигателя.
Поршневая – эта песня до сих пор не допета. Этой темы я касаться не буду – надеюсь, здесь будет всё стандартно.
Еще кое-что про масляную систему высокого давления
После замены масляного насоса высокого давления (дальше буду сокращать – МНВД), мы очень надеялись получить требуемую цифру – 6МПа (около 60 кг/см2.) безо всяких дополнительных усилий. Увы, жизнь показала, что мы были в тот момент только в начале пути.
Сначала пытались как-то прокачать магистраль, заполнить систему маслом. Потом подозрение пало на датчик давления масла в рампе. Тут он, кстати, и пострадал – безвинно! – был пущен на испытания. Тем не менее, считаю, что в заслугу всем нам может быть поставлено, что при столь неопределенно сложном ремонте эта была единственная напрасная потеря, да и то – пошла на научные цели. Конечно, не обошлось без везения – клапана в головке блока, кажется, не загнулись. Датчик, как позже оказалось, был ни при чем. А при чем оказался электромагнитный клапан, который был чисто механически перенесен со старого МНВД на новый. Этот клапан имеет свой отдельный каталожный номер и цену, и насос поставляется без него.
Клапан, на самом деле, не чисто электромагнитный, а состоит из двух частей – электромагнитного клапана и механического клапана, собранных в одном корпусе. Cвязь между этими частями я не усмотрел, но вполне вероятно, что она существует. Прошу учесть, что правдоподобие моего изложения о клапане, возможно, ниже, чем остальные части этого сообщения. С помощью электрической части компьютер управляет давлением в масляной рампе, а механическая, скорее всего, служит перепускным клапаном. По крайней мере, именно в механической части я обнаружил поршенек, который заклинило в открытом состоянии. Надо полагать, этот клапан сработал, когда я выключил "зажигание" и компьютер не смог уже управлять МНВД, а насос продолжал наращивать давление масла, так как жестко связан с вращающимся коленвалом.
После освобождения поршня и установки клапана на насос давление масла появилось, и не потребовалось никакой прокачки магистрали.
Что же касается наличия управления компьютером величиной давления в рампе, то тут сомнений никаких – до правильной установки ремня ГРМ высокое давление масла не превышало 3.5 ~ 4 МПа, и обмануть компьютер удавалось, только сняв фишку с датчика распредвала – тогда компьютер уже не знал про ошибку с меткой, путался и позволял масляному насосу работать "как заблагорассудится" – давление подскакивало за 75 кг/см2. Представляете наше изумление: фишку снял – качает, надел – не качает! После коррекции установки ремня всё встало на свои места – давление масла стало колебаться вокруг рассчитанного компьютером значения с небольшими отклонениями.
Заключение
От всех, кто прикоснулся к ремонту этого двигателя, слышалось одно и то же – в жизни не видел ничего похожего! К какой бы его системе ни довелось прикоснуться – приходилось брать в руки современные справочники, обращаться к Интернету и специалистам. Конечно, нам повезло, что это чудо – разработка 90-х годов, а не 2005-го – будь, например, связь блока управления и датчиков цифровой, а не аналоговой, вряд ли нам удалось без наличия специализированных стендов разобраться в работе самого простого узла, а тем более в общей логике работы системы.
Приступая к ремонту 4JX1, надо постоянно понимать, что этот двигатель гораздо умнее нашего представления о нем. По крайней мере, такое ощущение не покидало меня. Конечно, этот двигатель 1998 – 1999 г.г. выпуска имеет конструктивные изъяны, приводящие при определенных условиях к плачевному результату, подобному тому, что случился у меня. Но всё же есть надежда, что, начиная с 2000 года, недостатки этих моторов были вылечены, и так же они могут быть достаточно просто – путем замены уплотнений форсунок и масляно-топливного насоса – вылечены на более пожилых экземплярах. Надеюсь, что с этим также уйдет и проблема 4-го цилиндра двигателя, работающего при попадании масла в воздушную магистраль в жесточайших условиях.
В заключение хотелось бы материализовать слова, вынесенные в эпиграф статьи. Эта, казавшаяся неподъемной, задача была решена совместными усилиями энтузиастов, отнесшихся к моей проблеме, как к собственной: моего близкого друга Андрея Плохих – человека, обладающего энциклопедическими знаниями и колоссальным опытом во всем, что касается любой техники, и автомобилей – в особенности, обеспечившего всю измерительную и технологическую базу наших исследований и потратившего на это безнадежное дело уйму собственного времени и сил. Одного из участников дизельных конференций из Владивостока, пожелавшего остаться неназванным, который по малейшему намеку и без оного присылал мне имевшиеся на тот момент только у него выдержки из Исузовского мануала, изучал на своем живом Бигхорне значения параметров, которые нельзя было получить никак иначе, предлагал свои решения различных проблем, да и просто ежедневно интересовался нашими успехами и неуспехами. "Маква" – участника тех же форумов, большого энтузиаста и знатока Исузу, чьи выверенные советы всегда служили ориентирами и помогли в ряде случаев точно выйти на цель. Ну и, конечно, ребят из Опель-сервиса в Москве, в первую очередь Игоря Жиркова и механика Тимофея, поставивших себе принципом выпустить мой Монтерей с сервиса только на колесах и своим ходом и идущим к этой цели, несмотря на сложности и вопреки обстоятельствам.
Евгений Лебедев,
г. Москва, Март 2005 года.
E-mail: mozgoved_4JX1@mail.ru
Просьба, по возможности, не забывать ссылаться на источник при цитировании и воспроизведении данного материала. |